Mark scheme - Pressure (H)

Question		Answer/Indicative content	Marks	Guidance
1		D V	$\begin{gathered} 1 \\ (\mathrm{AO} 1.2) \end{gathered}$	Examiner's Comments About two thirds of candidates gave the correct answer D. A common incorrect response was ' C '.
		Total	1	
2		D V	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	Examiner's Comments This was well known by nearly all candidates who gave D as their answer.
		Total	1	
3		A	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
		Total	1	
4		B	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
		Total	1	
5		B	1	
		Total	1	
6	a	Water is much denser than air / AW (1)	1	
	b	Pressure increases as depth increases (1) Each 10 metres of depth increases pressure by 1 AW (1)	2	ALLOW direct / linear relationship
	c	It is the pressure of the atmosphere / AW (1)	1	
	d	Recall of ' g ' (1) Substitution into equation (1) $364 / 360 \text { (1) }$ 2 significant figures quoted / 360 (1)	4	9.8 or $10 \mathrm{~m} / \mathrm{s}^{2}$ ALLOW 356.72 (3)
		Total	8	
7		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description of the structure of the	$\begin{gathered} 6 \\ (\mathrm{AO} \\ 2 \times 3.1 \mathrm{a}) \\ (\mathrm{AO} \\ 2 \times 3.2 \mathrm{a}) \end{gathered}$	AO3.1a Analyse information and ideas to interpret some basic trends in data - density increases as depth increases

					explanation of why the outer core is liquid. Poor quality of communication, including contradictions or the same facts repeated a number of times, prevented some candidates from achieving a higher mark. Exemplar 2 \qquad In your answer you should explain any trends in the data in Table 22.1. bottom so the core musio be made onf.....laquerb. however boll wave wan tarael fotroutat. the coush and stremantly as... doun he fatle.....so.... the densiby of be earch must dinaverace from the suaface of the coulst to the contre of the 22 matarial as the partrcler ane dow togethen so. they... carry the ware fo each ather faster., boblob The date. therefure hacks.... up the the desify of the enanth .incresees.... toucrale the cantres. This response achieved Level 3, 6 marks. The candidates included a detailed description of the structure of the Earth, including ideas about density and the liquid outer core. There is also a detailed explanation of the trends shown in the table.
			Total	6	
8	a		Pressure is inversely proportional to volume OR $\rho \mathrm{V}=$ constant for a particular gas OR for any of the gases calculation of $p \times \vee \checkmark$ For gas B: $10 \times 0.4=4$ and for gas $C: 20 \times$ $0.2=4$ OR Pressure of C is double the pressure of B and volume of C is half the volume of $B \checkmark$ B and C V		NOTE could be written next to table Examiner's Comments This question required candidates to use the data in the table which was generally well answered by all candidates. Higher ability candidates clearly stated that pressure is inversely proportional to volume and then went on to state that pressure \times volume $=$ constant. Most candidates then calculated for each gas pressure \times volume before stating that B and C were the same. A few candidates demonstrated that doubling the pressure halved the volume and

		$(\mathrm{kg} / \mathrm{m} 3) \times \mathrm{g}(\mathrm{N} / \mathrm{kg}) / \mathrm{P}=\mathrm{h} \rho \mathrm{g}$ (no mark - on formula sheet) $\begin{aligned} & g=10(\mathrm{~N} / \mathrm{kg}) \checkmark \\ & \mathrm{P}=0.5 \times 1100 \times 10 \checkmark \\ & \mathrm{P}=5500(\mathrm{~Pa}) \checkmark \end{aligned}$	(AO1.1) (AO2.1) (AO2.1)	ALLOW 9.8(1) N/kg Examiner's Comments Most of the candidates correctly selected an equation from the data sheet and used an appropriate value for g. Candidates who did not gain credit for this question, tended to just multiply 0.5 by 1100 . By understanding that the unit of pressure is Pa or $\mathrm{N} / \mathrm{m}^{2}$, candidates should be able to reason that $\mathrm{m} \times \mathrm{kg} / \mathrm{m}^{3}$ is not valid.
		Total	9	
9		Any three from: Boat has bigger upthrust/buoyancy force (compared to weight of lump) / ORA / AW \checkmark Upthrust on boat is equal to weight of boat/ resultant force is zero / AW \checkmark Weight of water displaced by the boat is equal to the weight of the boat / AW \checkmark (Overall) density of the boat includes the air / ORA /AW $\sqrt{ }$ (Overall) density of the boat (and air) is less than the density of the water / ORA / AW \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 3 \times 2.1) \end{gathered}$	ALLOW upthrust on lump is less than weight of lump / there is a resultant force (acting downwards) ALLOW weight of water displaced by lump is less than weight of lump / AW ALLOW hollow for air ALLOW maximum of 1 mark for boat is hollow / contains air / ORA / AW
		Total	3	

